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Buckling of Functionally Graded Cylindrical Shells under
Combined Loads

Huaiwei Huang,1 Qiang Han,1,2 Nengwen Feng,1 and Xuejun Fan1

1Department of Engineering Mechanics, South China University of Technology, Guangzhou, PR China
2College of Architectural and Civil Engineering, Xinjiang University, Urumqi, PR China

By using the Ritz energy method and finite element method,
buckling behaviors of combined-loaded functionally graded cylin-
drical shells are investigated. The combined loads are composed of
axial, lateral, and torsional loads. Results show that the contribu-
tion of lateral pressure to buckling is more significant than that of
axial compression or torsion and the contributions of axial com-
pression and torsion are almost the same. Also, a practical method
is proposed in this article to determine the load-dominant bound
between the single buckling mode due to one dominant load and
the mixed buckling mode due to interaction of the two loads.

Keyword FGMs, cylindrical shells, combined-load, buckling, energy
method, FEM

1. INTRODUCTION
Functionally graded materials (FGMs) are a kind of new

material, born in 1984 [1], and usually made from a mixture
of two constituents, i.e., ceramic and metallic materials. The
volume fractions of these constituents vary continually through
FGMs’ thickness, which enables a smooth change in material
properties. Thus, there are at least two advantages. First, be-
cause of the smooth change in the material properties of FGMs,
stress concentration seen commonly in the disconnected ma-
terial interfaces of the traditional fiber-reinforced or laminated
composites can be effectively released. Second, optimization
design of internal stresses can be easily achieved by altering the
distribution of their constituents.

Early attention had been paid to thermoelastic and ther-
moinelastic characters of FGM structures [2–7]. Recently, sta-
bility problems of FGMs, such as their vibration and buckling
behaviors, have attracted more and more attention. Loy et al.
[8] and Bhangale and Ganesan [9] studied free vibration char-
acters of functionally graded cylindrical shells (FGCSs). Also,
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force vibration of axially period-loaded FGCSs was discussed
by Ng et al. [10] and Darabi et al. [11]. Buckling stability of
FGCSs is another important research field deserved to be fo-
cused on. By using the first shear deformation theory and the
Donnell theory, respectively, Shahsiah and Eslami [12] and Wu
et al. [13] considered the effects of various temperature distribu-
tions on thermal buckling of FGCSs. However, Shahsiah never
included the thermal conduction effect, while Wu never consid-
ered the temperature-dependent material properties of FGMs.
Taking both into account, Kadoli et al. [14] dealt with the same
problem and revealed some valuable results for thermal buck-
ling and vibration characters of FGCSs. Li and Batrab [15] and
Najafizadeh et al. [16] presented linear buckling analyses for
middle-layered and stiffened FGCSs under axial load, respec-
tively. Sofiyev [17, 18] and Sofiyev and Schnack [19] studied
dynamic buckling behaviors of FGCSs under time-dependent
torsional, lateral, and axial loads.

Except for the linear static or dynamic buckling of FGCSs,
using the boundary layer theory, Shen [20, 21] and Shen and
Noda [22] presented a series of systematical analyses for post-
buckling behaviors of FGCSs under axial and lateral loads as
well as their combination. Although his theory included simul-
taneously the effects of nonlinear prebuckling deformations, the
postbuckling large deflections, and initial geometric imperfec-
tions, the complicated formulation restricted its applications.

Generally, in-served cylindrical shells usually buckle not
merely under one of the basic loads, i.e., axial compression,
lateral pressure, and torsion, but under a combination of them.
Fundamental theoretical and experimental studies on combined-
loaded isotropic cylindrical shells had been systematically re-
ported by Yamaki [23]. Also, Shen [24] and Shen and Xiang [25]
presented theoretical analyses for laminated cylindrical shells
under axial-lateral and axial-torsional combined-loads. How-
ever, investigation on buckling of combined-loaded FGCSs was
seldom touched. In this article, buckling behaviors of combined-
loaded FGCSs are investigated by using two different meth-
ods: the Ritz energy method and FEM. Three combined load
cases were considered, including axial-lateral, axial-torsional,
and lateral-torsional combined-loads. The effects of various
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338 H. HUANG ET AL.

FIG. 1. Geometry and coordinate system of FGCSs.

combined-loads on buckling of FGCSs are discussed at length.
Meanwhile, a practical method is proposed in this article to de-
termine the load-dominant bound between the single buckling
mode due to one dominant load and the mixed buckling mode
due to interaction of the two loads.

2. FORMULATIONS
Figure 1 shows a FGCS with length l, mean radius R, and

thickness h. The origin o is located on the left end and at the
middle plane of the shell. x, y, and z are in the axial, circum-
ferential, and inner normal directions, respectively.

2.1. Material of FGMs
FGMs are inhomogeneous materials generally made from

a mixture of ceramic and metallic constituents. Generally, the
volume fraction of the ceramic material is assumed to follow a
power law distribution according to Reddy and Chin [5].

Vc = (0.5 + z/h)N , Vc + Vm = 1, (1)

where Vc and Vm denotes, respectively, the volume fractions
of the ceramic and metallic constituents, and N is the power
law exponent or the inhomogeneous parameter. The material
property of FGMs Pf is given as:

Pf = Pm Vm + PcVc, (2)

where Pc and Pm are the material properties of ceramic and
metallic constituents. From Eqs. (1) and (2), Pf can be rewritten
as:

Pf (z) = Pm + (0.5 + z/h)N (Pc − Pm) . (3)

Herein, Pf can be used to represent FGMs’ material proper-
ties, such as Young’s modulus E f , Poisson ratio µ f , etc., and
we have:

E f (z) = Em + (0.5 + z/h)N (Ec − Em)
µ f (z) = µm + (0.5 + z/h)N (µc − αm) .

(4)

2.2. Basic Equations
The constitutive relations of cylindrical shells are

⎧⎨
⎩

σx

σy

τxy

⎫⎬
⎭ =

⎡
⎣ Q11 Q12 0

Q21 Q22 0
0 0 Q66

⎤
⎦
⎧⎨
⎩

εx

εy

γxy

⎫⎬
⎭ , (5)

where Q11 = Q22 = E f (z)/(1 − µ2
f ), Q12 = µ f E f (z)/

(1 − µ2
f ), Q66 = E f (z)/

[
2
(
1 + µ f

)]
, and the strain compo-

nents {ε} are given as:

{ε} =

⎧⎪⎨
⎪⎩

εx

εy

γxy

⎫⎪⎬
⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

ε0
x + zkx

ε0
y + zky

γ0
xy + zkxy

⎫⎪⎪⎬
⎪⎪⎭ . (6)

Based on Von-Kárman nonlinear strain-displacement rela-
tion, the strain components {ε0} and the curvature components
{k} on the reference surface are

{
ε0
} =

⎧⎨
⎩

ε0
x

ε0
y

γ0
xy

⎫⎬
⎭ =

⎧⎨
⎩

u,x

v,y − w/R
u,y + v,x

⎫⎬
⎭ , (7)

{k} =
⎧⎨
⎩

kx

ky

kxy

⎫⎬
⎭ = −

⎧⎨
⎩

w,xx

w,yy

2w,xy

⎫⎬
⎭ , (8)

in which u (x, y) , v (x, y) , and w (x, y) are the displacements
along x, y, and z axes, respectively. Subscripts following a
comma stand for partial differentiations.

For thin cylindrical shells with h/R << 1, the approximate
forms of internal force and moment resultants are

{(Nx , Ny, Nxy), (Mx , My, Mxy)} =
∫ h

2

− h
2

{σx , σy, τxy}(1, z)dz.

(9)
Substitution of Eq. (5) into Eq. (9) obtains:

{
N
M

}
=
[

A B
B D

]{
ε0

k

}
or

{
ε0

M

}
=
[

A∗ B∗

C∗ D∗

]{
N
k

}
,

(10)
where

[N , M]T = [Nx , Ny, Nxy, Mx , My, Mxy]T ,

A∗ = A−1, B∗ = −A−1 B, D∗ = D − B A−1 B, C∗

= −(B∗)T ,

Ai j =
∫ h

2

− h
2

Qijdz, Bij

=
∫ h

2

− h
2

Qijzdz, Dij =
∫ h

2

− h
2

Qijz
2dz, (i, j = 1, 2, 6) .
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BUCKLING OF COMBINE-LOADED FGM CYLINDRICAL SHELLS 339

The strain energy of a thin cylindrical shell is approximated to
be

U = 1

2

∫∫
V

∫
(σxεx + σyεy + τxyεxy)dV, (11)

where V represents the volume field of the shell. With the aid
of Eqs. (6) and (9), the above equation is rewritten as:

U = 1

2

∫
S

∫
(Nxε

0
x + Nyε

0
y + Nxyγ

0
xy)dxdy

+ 1

2

∫
S

∫
(Mx Kx + My Ky + Mxy Kxy)dxdy, (12)

where S represents the x − y area field of the shell. The first and
the second integrals represent the strain energy, respectively,
aroused by membrane forces and bending moments.

The work done by external forces

W = Nx0

∫
F

∫ (
−1

2
w2

,x

)
dxdy + Ny0

∫
F

∫ (
−1

2
w2

,y

)
dxdy

+Nxy0

∫
F

∫ (−w,xw,y
)

dxdy (13)

where Nx0, Ny0, and Nxy0 are the prebuckling axial, circumfer-
ential, and shear membrane forces.

The total potential energy of the system can be written as:

� = U − W. (14)

From Eq. (7), the compatible equation is obtained as:

ε0
x,yy + ε0

y,xx − γ0
xy,xy = −w,xx/R. (15)

Introducing Airy’s stress function F (x, y) satisfying

Nx = F,yy, Ny = F,xx , Nxy = −F,xy . (16)

With the aid of Eqs. (10) and (16), Eq. (15) becomes:

A∗
11 F,yyyy + (2A∗

12 + A∗
66

)
F,xxyy

+ A∗
22 F,xxxx = B∗

12

(
w,xxxx + w,yyyy

)
+ (

2B∗
66 − B∗

11 − B∗
22

)
w,xxyy − w,xx/R

(17)

3. SOLUTION
Assume that the combined-loaded FGCS is approximately

simply supported and the deflection is in the following

form [26]:

w (x, y) = w0 + w1 = A0h + A1h sin
mπx

l
sin

n

R
(y + γx) ,

(18)
where w0 = A0h denotes the equivalent prebuckling uniform
deflection and w1 = A1h sin mπx

l sin n
R (y + γx) the buckling

deflection. A0, A1 are unknown amplitude parameters. m, n are
the axial half-wave numbers and the circumferential wave num-
bers, respectively. γ is the included angle between the buckling
shape and x-axis.

Herein, the prebuckling deflection is assumed to be uniform
to simplify the formulation. In fact, the prebuckling deflection
w0 is always much smaller than the buckling one w1 and negli-
gible in buckling analysis, so this assumption would not affect
the accuracy of the buckling prediction. Other than the prebuck-
ling deflection, the buckling deflection w1 satisfies the simple
support boundary conditions in the integral sense.

For convenience, Eq. (18) is written as:

w (x, y) = A0h + 1

2
A1h

[
cos

n

R
(y + j x) − cos

n

R
(y + kx)

]
,

(19)
where j = γ − θ, k = γ + θ, and θ = mπR

/
(nl).

Substituting Eq. (19) into Eq. (17), one obtains:

F (x, y) = a cos
n

R
(y + j x) + b cos

n

R
(y + kx) + 1

2
Ny0x2

+ 1

2
Nx0 y2 − Nxy0xy, (20)

where

a = A1h R j2

2n2
(
1 + j2

)2
A∗

11

b = − A1h Rk2

2n2
(
1 + k2

)2
A∗

11

.

From force boundary conditions,

∫ 2πR

0
Nx0dy + h

∫ 2πR

0
pdy = 0, R

∫ 2πR

0
Nxy0dy + Rh

∫ 2πR

0
Sdy = 0, (21)

and one obtains:

Nx0 = −ph, Ny0 = −q R, Nxy0 = −Sh (22)

It is convenient to define the nondimensional parameters as:

p1 = p A∗
11 R, p2 = q A∗

11 R2/h, τ = S A∗
11 R,η = n2h/R
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340 H. HUANG ET AL.

Considering Eqs. (19) and (20) in Eqs. (12) and (13), one
obtains the total potential energy from Eq. (14):

� = A2
1h2lπ

4A∗
11 R

{[
j4(

1 + j2
)2 + k4(

1 + k2
)2
]

−η
[
( j2 + k2)p1 + 2p2 + 2 ( j + k) τ

]
+ D∗

11 A∗
11η

2

h2

[
( j2 + 1)2 + (k2 + 1)2

]}

+ h2lπ

A∗
11 R

[
p2

1 + p2
2 − 2µp1 p2 + 2 (1 + µ) τ2

]
. (23)

Applying the Ritz energy method, ∂�
∂ A1

= 0, and noting A1 �= 0,
one obtains:

j4(
1 + j2

)2 + k4(
1 + k2

)2 + D∗
11 A∗

11η
2

h2

[
(1 + j2)2 + (1 + k2)2

]
− η

[
p1
(

j2 + k2
)+ 2p2 + 2τ ( j + k)

] = 0.

(24)
This equation can be used to derive the buckling condition

of combined-loaded FGCSs.
Considering a pure axial compression case with γ = 0, one

obtains from Eq. (24):

ph = 1

A∗
11 R2

(
α

α2 + β2

)2

+ D∗
11

(
α2 + β2

α

)2

(25)

where α = mπ/ l, β = n/R. Minimizing p with regard to α
α2+β2

yields the axial critical load:

pcr = 2
√

D∗
11/A∗

11/(Rh) (26)

which can easily be further degraded to the classical critical load
of isotropic ceramic shells,

pcr = Ech/
(
R
√

1 − µ2
c

)
when N = 0

In a pure lateral pressure case with γ = 0, from Eq. (24), the
lateral critical load is

q R = α2

β2

(
1

A∗
11 R2

(
α

α2 + β2

)2

+ D∗
11

(
α2 + β2

α

)2)
. (27)

This equation can easily be degraded to that of an isotropic
shell by setting N = 0, that is,

q R = Ech

[
α4

R2β2
(
α2 + β2

)2 + h2(α2 + β2)2

12β2(1 − µ2
c)

]
, (28)

with q R = σ0yh (where σ0y denotes the average hoop stress),
Eq. (28) is equivalent to that obtained from the classical linear
theory [27].

In a pure torsional load case and from Eq. (24), we have

Sh = 1

4R2β2γA∗
11

{
(α − βγ)4[

β2 + (α − βγ)2
]2 + (α + βγ)4[

β2 + (α + βγ)2
]2

+ 2R2 A∗
11 D∗

11

[
α4 + β4(1 + γ2)2 + 2α2β2(1 + 3γ2)

]}
(29)

In a pure load case, from Eqs. (25), (28), and (29), the corre-
sponding critical load pcr , qcr , and Scr can be derived by mini-
mizing p, q, and S with regard to various values of m, n, as well
as γ in the case of torsion. Similarly, in a combined load case,
one can determine the parameters of the critical load p1cr , p2cr ,
and τcr from Eq. (24). For example, giving the value of p1, p2,
one obtains τcr by minimizing τ with regards to various values
of m, n, and γ.

4. ANALYTICAL RESULTS
The FGMs discussed in this article are chosen to be a mix-

ture of silicon nitride and stainless steel (or Si3N4/SUS304).
The Young’s modulus of these two constituents are Ec =
322.27GPa, Em = 207.79GPa, and FGMs’ Poisson ratio
µ f = 0.28.

4.1. Verification of the Present Theory
To verify the present theory, comparisons made with Shen

[21] in Table 1 for laterally loaded homogeneous cylindrical
shells indicate a maximal derivation of the critical load less
than 3%. In addition, the buckling modes consist very well
with those in the literature. Meanwhile, the reproduced data
from Sofiyev’s formulations [17–19] on the static critical axial,
lateral, and torsional loads of FGCSs are compared in Table 2.

4.2. Analytical Results
Three two-load combination cases, i.e., axial and lateral

combined-load case (ALCC), axial and torsional combined-
load case (ATCC), and lateral and torsional combined-load case
(LTCC) are considered in the present work.

Figures 2–4 (with the calculating parameters listed) plot the
relation curves of the corresponding critical load parameter
p1cr , p2cr , or τcr versus the power law exponent N under the
three two-load combination cases with one of the loads fixed.
All of the critical load parameters decrease rapidly and then
increase slowly with the increase of N . From Figures 2a and
2b it can be seen that p1cr decreases greatly with the increase
of p2, while p2cr decreases slightly with the increase of p1.
From Figures 3a and 3b it is shown that p1cr decreases with the
increase of τ, and τcr decreases with the increase of p1. From
Figures 4a and 4b it can be seen that p2cr keeps nearly invariable
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BUCKLING OF COMBINE-LOADED FGM CYLINDRICAL SHELLS 341

TABLE 1
Verification of the present critical lateral load qcr (×10−4 MPa) of homogeneous cylindrical shells

L/R R/h Shen [21] Present Difference (%)

0.5 300 2761.397 (1, 15)a 2809.31 (1, 16) 1.74
3000 7.8184 (1.28) 7.94526 (1, 29) 1.62

1 300 1272.597 (1, 11) 1294.65 (1, 11) 1.73
500 348.588 (1, 13) 353.781 (1, 13) 1.49

1000 60.5364 (1, 15) 61.3375 (1, 15) 1.32
1500 21.7969 (1, 17) 21.9684 (1, 17) 0.79
2000 10.5690 (1, 18) 10.6375 (1, 18) 0.65
3000 3.8144 (1, 20) 3.83065 (1, 20) 0.43

2 300 611.7448 (1, 8) 617.626 (1, 8) 0.96
3000 1.8842 (1, 14) 1.89097 (1, 14) 0.36

3 300 402.6016 (1, 7) 413.996 (1, 7) 2.83
3000 1.2511 (1, 12) 1.25669 (1, 12) 0.45

5 300 239.0987 (1, 5) 239.831 (1, 5) 0.31
3000 0.7482 (1, 9) 0.748563 (1, 9) 0.05

aThe numbers in the parentheses denote the buckling mode (m, n).

TABLE 2
Comparison of the critical loads (in MPa) of FGCSs with those reproduced from Sofiyev (Si3N4/SUS304, R/h = 500, L/R = 2)

Si3N4 N = 0.2 N = 0.5 N = 1 N = 2 N = 5 N = 10 N = 20 SUS304

The critical axial load pcr

Sofiyev [19] 387.631 362.064 338.303 316.927 297.936 279.100 268.659 261.018 249.933
Present 387.631 361.612 337.604 316.294 297.745 279.521 268.970 261.163 249.933

The critical lateral load qcr

Sofiyev [17] 0.0262 0.0243 0.0228 0.0215 0.0203 0.0191 0.0184 0.0178 0.0169
Present 0.0272 0.0252 0.0235 0.0221 0.0209 0.0198 0.0191 0.0185 0.0175

The critical torsional load Scr

Sofiyev [18] 73.721 68.465 64.178 59.990 56.912 53.412 51.394 49.859 47.533
Present 74.224 69.044 64.381 60.404 57.139 53.978 51.950 50.325 47.857

FIG. 2. Relation curves of the critical parameters versus the power law exponent under ALCC.
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342 H. HUANG ET AL.

FIG. 3. Relation curves of the critical parameters versus the power law exponent under ATCC.

and decreases slightly with the increase of τ, and τcr decreases
markedly with the increase of p2.

5. FEM RESULTS
FEM is one of the most effective methods to solve com-

plicated engineering problems. It is also effective in solving
eigenvalue problems of buckling. However, due to absence of a
ready material option in the existing FEM codes, it is difficult
in simulating FGMs’ material properties, which vary smoothly
through the thickness. For this reason, there is still no pre-
cise modeling of FGMs by the FEM code in the literature.
Some studies, with regard to three-dimensional elastic analysis
by ANSYS code, were reported by Yang et al. [28] and Liu
[29]. They regarded FGMs as multilayer materials and define
the material properties of each layer as an isotropic one. This
kind of modeling method easily leads to imprecise modeling
of FGMs’ material properties and complication in modeling
treatment.

Due to absence of a ready material option in the existing
FEM codes, in this article, the FORTRAN code helps to form
the stiffness matrix of FGMs’ shell element, which can be in-
put into the general FEM code ABAQUS through its UMAT

module. It should be noted that the shear factor of the shell is
given as 5/6 in the present finite element analysis, and the shell
is simply supported. The aforementioned Si3N4/SUS304 mate-
rial properties are also used in this section. For the aforemen-
tioned three two-load combination cases, load-ratio parameters
are introduced as λ1 = q/p,λ2 = S/p,λ3 = S/q . Figure 5
shows the finite element model of FGCSs from the ABAQUS
code.

5.1. Buckling under Axial and Lateral Combined-Load
Figures 6a–6d show the buckling modes under various load-

ratio parameters λ1 (the basic calculating parameters used are
listed in the title of the figures for convenience). It is clear that,
with the increase of λ1, the buckling mode converts gradually
from the classical axially loaded buckling mode characterized by
m = 8 (see Figure 6a) to the classical laterally loaded buckling
mode characterized by m = 1 (see Figure 6d). The axial half
wave number m also decreases with the increase of λ1. Figures
6b and 6c show mixed buckling modes aroused by interaction
between the axial load and the lateral load.

Figure 7 shows excellent agreement between theoretical
results and FEM results. It is remarkable that, with the

FIG. 4. Relation curves of the critical parameters versus the power law exponent under LTCC.
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BUCKLING OF COMBINE-LOADED FGM CYLINDRICAL SHELLS 343

FIG. 5. Finite element model of FGCSs from ABAQUS.

increase of λ1, there appears in order a slow, rapid, and then
re-slow decrease of Pcr . This shows that buckling of the
structure is more sensitive to lateral load than to axial load,
and the value of λ1 can accordingly be divided into three dif-
ferent regions, i.e., (0, 5 × 10−5), (5 × 10−5, 30 × 10−5), and
[30 × 10−5, 100 × 10−5), which correspond respectively to a
classical axially-loaded buckling mode, a mixed buckling mode,
and a classical laterally-loaded buckling mode. This can also be
validated by Figure 6 as the aforementioned.

5.2. Buckling under Axial and Torsional Combined-Load
Figures 8a–8f show the buckling modes under various λ2.

With the increase of λ1, the buckling mode converts gradually
from the classical axially loaded buckling mode characterized

FIG. 7. Comparison of theoretical results with FEM results under ALCC.

by m = 8 (see Figure 8a) to the classical torsional buckling
mode characterized by m = 1 (see Figure 8f). Also, with the
increase of λ2, the axial half wave number m decreases and the
torsional angel γ increases gradually. Although there is a slight
γ seen in Figure 8b, the buckling is still dominated by axial

FIG. 6. Buckling modes of FGCSs under ALCC (N = 1, l = 1m, R = 0.1m, h = 1mm).
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FIG. 8. Buckling modes of FGCSs under ATCC (N = 1, l = 1m, R = 0.1m, h = 1mm).

load. Figures 8c–8e show mixed buckling modes aroused by
interaction between axial load and torsional load.

Figure 9 shows excellent agreement between theoretical re-
sults and FEM results. It is remarkable that, with the increase of
λ2, Pcr keeps nearly invariable and decreases slightly. Thus, the
contributions of axial load and torsion load to buckling equate
to each other and Figure 7 cannot be used to determine the
load-dominant bounds as in the axial and lateral combined load
case. However, one can determine the load-dominant bounds
from Figure 8 where the value of λ2 can be divided into three
different regions according to the value of m, i.e., (0, 0.050,
(0.05, 0.5), and (0.5,+∞), which correspond respectively to a
classical axially-loaded buckling mode, a mixed buckling mode,
and a classical torsional buckling mode.

5.3. Buckling under Lateral and Torsional
Combined-Load

Figures 10a and 10b show the buckling modes under λ3 =
2 × 108, 2 × 109. It is clear that, with the increase of λ3, the FIG. 9. Comparison of theoretical results with FEM results under ATCC.
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FIG. 10. Buckling modes of FGCSs under LTCC (N = 1, l = 1m, R = 0.1m, h = 1mm).

torsional angel γ enlarges. As the axial half wave number m
under lateral and torsional loads are equated, i.e., m = 1, there
is no character to determine the load-dominant bounds from
Figure 10.

Figure 11 shows excellent agreement between theoretical re-
sults and FEM results. λ3-axis is in the logarithmic form. It
is remarkable that, with the increase of λ3, there appears, in
order, a slow, rapid, and then re-slow decrease of Pcr . This
shows that buckling of the structure is more sensitive to lateral
load than to torsional load, and the value of λ3 can accord-
ingly be divided into three different regions, i.e., (0 , 2 × 108

]
,(

2 × 108, 2 × 1010
)
, and

[
2 × 1010 , +∞), which correspond

respectively to a classical laterally-loaded buckling mode, a
mixed buckling mode, and a classical torsional buckling mode.

6. CONCLUSIONS
Buckling behaviors of combined-loaded FGCSs are investi-

gated by using two different methods, the Ritz energy method
and FEM. The combined-loads are composed of three relevant
external forces, i.e., axial compression, lateral pressure, and tor-

FIG. 11. Comparison of theoretical results with FEM results under LTCC.

sion. Results of these two different methods are in excellent
agreement, which validates the reliability of the present analy-
sis. Theoretical and numerical results show that the contribution
of lateral pressure to buckling of FGCSs is more significant than
that of axial compression or torsion, while the contributions of
axial compression and torsion are almost the same. Meanwhile,
in a two-load combination case, either a single buckling mode
due to one dominant load or a mixed buckling mode due to
interaction of the two loads may appear according to the value
of load ratio parameter. A practical method is proposed to de-
termine the load-dominant bound between the single buckling
mode and the mixed buckling mode, that is, in ALCC, the load-
dominant bound can be determined from both the figure of
different buckling modes and the relation curve of the critical
load versus the load-ratio parameter, while in ATCC, it can be
only determined from the figure of different buckling modes,
and in LTCC, it can be only determined from the relation curve
of the critical load versus the load-ratio parameter.
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